Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Asunto principal
Tópicos
Tipo del documento
Intervalo de año
1.
Comput Biol Med ; 159: 106885, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2290994

RESUMEN

Corona virus disease (COVID-19) has been emerged as pandemic infectious disease. The recent epidemiological data suggest that the smokers are more vulnerable to infection with COVID-19; however, the influence of smoking (SMK) on the COVID-19 infected patients and the mortality is not known yet. In this study, we aimed to discern the influence of SMK on COVID-19 infected patients utilizing the transcriptomics data of COVID-19 infected lung epithelial cells and transcriptomics data smoking matched with controls from lung epithelial cells. The bioinformatics based analysis revealed the molecular insights into the level of transcriptional changes and pathways which are important to identify the impact of smoking on COVID-19 infection and prevalence. We compared differentially expressed genes (DEGs) between COVID-19 and SMK and 59 DEGs were identified as consistently dysregulated at transcriptomics levels. The correlation network analyses were constructed for these common genes using WGCNA R package to see the relationship among these genes. Integration of DEGs with network analysis (protein-protein interaction) showed the presence of 9 hub proteins as key so called "candidate hub proteins" overlapped between COVID-19 patients and SMK. The Gene Ontology and pathways analysis demonstrated the enrichment of inflammatory pathway such as IL-17 signaling pathway, Interleukin-6 signaling, TNF signaling pathway and MAPK1/MAPK3 signaling pathways that might be the therapeutic targets in COVID-19 for smoking persons. The identified genes, pathways, hubs genes, and their regulators might be considered for establishment of key genes and drug targets for SMK and COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Transcriptoma/genética , SARS-CoV-2 , Pulmón , Células Epiteliales , Fumar/efectos adversos , Fumar/genética , Biología Computacional
2.
Computers in biology and medicine ; 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2263220

RESUMEN

Corona virus disease (COVID-19) has been emerged as pandemic infectious disease. The recent epidemiological data suggest that the smokers are more vulnerable to infection with COVID-19;however, the influence of smoking (SMK) on the COVID-19 infected patients and the mortality is not known yet. In this study, we aimed to discern the influence of SMK on COVID-19 infected patients utilizing the transcriptomics data of COVID-19 infected lung epitheial cells and transcriptomics data smoking matched with controls from lung epithelial cells. The bioinformatics based analysis revealed the molecular insights into the level of transcriptional changes and pathways which are important to identify the impact of smoking on COVID-19 infection and prevalence. We compared differentially expressed genes (DEGs) between COVID-19 and SMK and 59 DEGs were identified as consistently dysregulated at transcripomics levels. The correlation network analyses were constructed for these common genes using WGCNA R package to see the relationship among these genes. Integration of DEGs with network analysis (protein-protein interaction) showed the presence of 9 hub proteins as key so called ”candidate hub proteins” overlapped between COVID-19 patients and SMK. The Gene Ontology and pathways analysis demonstrated the enrichment of inflammatory pathway such as IL-17 signaling pathway, Interleukin-6 signaling, TNF signaling pathway and MAPK1/MAPK3 signaling pathways that might be the therapeutic targets in COVID-19 for smoking persons. The identified genes, pathways, hubs genes, and their regulators might be considered for establishment of key genes and drug targets for SMK and COVID-19.

3.
Smart Health (Amst) ; 28: 100382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2221366

RESUMEN

COVID-19 is a highly contagious disease that was first identified in 2019, and has since taken more than six million lives world wide till date, while also causing considerable economic, social, cultural and political turmoil. As a way to limit its spread, the World Health Organization and medical experts have advised properly wearing face masks, social distancing and hand sanitization, besides vaccination. However, people wear masks sometimes uncovering their mouths and/or noses consciously or unconsciously, thereby lessening the effectiveness of the protection they provide. A system capable of automatic recognition of face mask position could alert and ensure that an individual is wearing a mask properly before entering a crowded public area and putting themselves and others at risk. We first develop and publicly release a dataset of face mask images, which are collected from 391 individuals of different age groups and gender. Then, we study six different architectures of pre-trained deep learning models, and finally propose a model developed by fine tuning the pre-trained state of the art MobileNet model. We evaluate the performance (accuracy, F1-score, and Cohen's Kappa) of this model on the proposed dataset and MaskedFace-Net, a publicly available synthetic dataset created by image editing. Its performance is also compared to other existing methods. The proposed MobileNet is found as the best model providing an accuracy, F1-score, and Cohen's Kappa of 99.23%, 99.22%, and 99.19%, respectively for face mask position recognition. It outperforms the accuracy of the best existing model by about 2%. Finally, an automatic face mask position recognition system has been developed, which can recognize if an individual is wearing a mask correctly or incorrectly. The proposed model performs very well with no drop in recognition accuracy from real images captured by a camera.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA